Skip to main content

Vegetation of the Boreal (Cold–Temperate) Zone

  • Chapter
  • First Online:
Global Vegetation

Abstract

The largest contiguous forest areas on Earth are located in the boreal zone which occurs exclusively in the Northern Hemisphere. They largely consist of evergreen coniferous forests of spruce, Scots pine and fir. The summergreen larch is a stand-forming tree only in Central and Eastern Siberia, where the climate is extremely cold and precipitation is low. The boreal forests are highly affected by fire and windthrow. At a mean interval of about 200 years between fire events, regeneration phases of different ages exist next to each other in a mosaic-like manner. Forests of summergreen broad-leaved trees (birch, poplar) only occur as pioneer phases and (zonally) in extremely oceanic regions of Eurasia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaimov, A. P. (2010). Geographical distribution and genetics of Siberian larch species. In A. Osawa, O. A. Zyryanova, Y. Matsuura, T. Kajimoto, & R. W. Wein (Eds.), Permafrost ecosystems. Siberian Larch Forests (Ecological studies, Vol. 209, pp. 41–58). Dordrecht: Springer.

    Google Scholar 

  • Anderson, L. L., Hu, F. S., Nelson, D. M., Petit, R. J., & Paige, K. N. (2006). Ice-age endurance: DNA evidence of a white spruce refugium in Alaska. Proceedings of the National Academy of Sciences USA, 103, 12447–12450.

    CAS  Google Scholar 

  • Arnborg, T. (1990). Forest types of northern Sweden. Vegetatio, 90, 1–13.

    Google Scholar 

  • Bailey, R. G. (2009). Ecosystem geography. From ecoregions to sites (2nd ed., 251 pp). New York: Springer.

    Google Scholar 

  • Balshi, M. S., McGuire, A. D., Duffy, P., Flannigan, M., Kicklighter, D. W., & Melillo, J. (2009). Vulnerability of carbon storage in north American boreal forests to wildfires during the 21st century. Global Change Biology, 15, 1491–1510.

    Google Scholar 

  • Bergeron, Y., & Dubuc, M. (1989). Succession in the southern part of the Canadian boreal forest. Vegetatio, 79, 51–63.

    Google Scholar 

  • Bertsch, A. (1983). Nectar production of Epilobium angustifolium L. at different air humidities; nectar sugars in individual flowers and the optimal foraging theory. Oecologia, 59, 40–48.

    CAS  PubMed  Google Scholar 

  • Binney, H.A., Willis, K.J., Edwards, M.E., Bhagwat, S.A., Anderson, P.M., Andreev, A.A., Blaauw, M., Damblon, F., Haesaerts, P., Kienast, F., Kremenetski, K.V., Krivonogov, S.K., Lozhkin, A,V., MacDonald, G.M., Novenko, E.Y., Oksanen, P., Sapelko, T.V., Väliranta, M. & Vazhenina, L. (2009). The distribution of late-quaternary woody taxa in northern Eurasia: Evidence from a new macrofossil database. Quaternary Science Reviews 29, 2445–2464.

    Google Scholar 

  • Blümel, W. D. (1999). Physische Geographie der Polargebiete. Leipzig: Teubner.

    Google Scholar 

  • Botch, M., & Masing, K. I. (1983). Mire ecosystems of the U.S.S.R. In A. J. P. Gore (Ed.), Mires: Swamp, Bog, Fen and Moor. Ecosystems of the world (Vol. 4B, pp. 95–152). New York: Elsevier.

    Google Scholar 

  • Broderick, D. H. (1990). The biology of Canadian weeds. 93. Epilobium angustifolium L. (Onagraceae). Canadian Journal of Plant Science, 70, 247–259.

    Google Scholar 

  • Brown, R. J. E. (1970). Permafrost in Canada. Its influence in northern development (234 pp). Toronto: University of Toronto Press.

    Google Scholar 

  • Bryant, J. P., & Chapin III, F. S. (1986). Browsing-woody plant interactions during boreal forest plant succession. In K. Van Cleve, F. S. III Chapin, P. W. Flanagan, L. A. Viereck, & C. T. Dyrness (Eds.), Forest ecosystems in the Alaskan Taiga (Vol. 57, Ecological studies 57, pp. 213–225). New York: Springer.

    Google Scholar 

  • Burton, P. J., Parisien, M.-A., Hicke, J. A., Hall, R. J., & Freeburn, J. T. (2008). Large fires as agents of ecological diversity in the north American boreal forests. International Journal of Wildland Fire, 17, 754–767.

    Google Scholar 

  • Cairney, J. W. G., & Meharg, A. A. (2003). Ericoid mycorrhiza: A partnership that exploits harsh edaphic conditions. European Journal of Soil Science, 54, 735–740.

    Google Scholar 

  • Cajander, A. K. (1930). Wesen und Bedeutung der Waldtypen. Silva Fennica, 15, 66 pp.

    Google Scholar 

  • Canadian Forest Service (n.d.). The State of Canada’s Forests 2004–2005. http://cfs.nrcan.gc.ca/.

  • Chapin, F. S., III, Callaghan, T. V., Bergeron, Y., Fukuda, M., Johnstone, J. F., Juday, G., & Zimov, S. A. (2004). Global change and the boreal forest: Thresholds, shifting states or gradual change? Ambio, 33, 361–365.

    PubMed  Google Scholar 

  • Chapin, F. S., III, Viereck, L. A., Adams, P., Van Cleve, K., Fastie, C. L., Ott, R. A., Mann, D., & Johnstone, J. F. (2006). Successional processes in the Alaskan boreal forest. In F. S. Chapin III, M. W. Oswood, K. Van Cleve, L. A. Viereck, & D. L. Verbyla (Eds.), Alaska’s changing boreal forest (pp. 100–120). New York: Oxford University Press.

    Google Scholar 

  • Cocchietto, M., Skert, N., Nimis, P. L., & Sava, G. (2002). A review on usnic acid, an interesting natural compound. Naturwissenschaften, 89, 137–146.

    CAS  PubMed  Google Scholar 

  • Cole, D. W., & Rapp, M. (1981). Elemental cycling in forest ecosystems. In D. E. Reichle (Ed.), Dynamic properties of Forest ecosystems (pp. 341–409). Cambridge: Cambridge University Press.

    Google Scholar 

  • Couwenberg, J., & Joosten, H. (2005). Self-organization in raised bog patterning: The origin of microtope zonation and mesotope diversity. Journal of Ecology, 93, 1238–1248.

    Google Scholar 

  • Crittenden, P. D. (2000). Aspects of the ecology of mat-forming lichens. Rangifer, 20, 127–139.

    Google Scholar 

  • Dahlberg, A. (2001). Community ecology of ectomycorrhizal fungi: An advancing interdisciplinary field. New Phytologist, 150, 555–562.

    Google Scholar 

  • Danby, R. K., & Hik, D. S. (2007). Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. Journal of Ecology, 95, 352–363.

    Google Scholar 

  • DeAngelis, D. L., Gardner, R. H., & Shugart, H. H. (1981). Productivity of forest ecosystems studies during IBP: The woodland dataset. In D. E. Reichle (Ed.), Dynamic properties of forest ecosystems (pp. 567–672). Cambridge: Cambridge University Press.

    Google Scholar 

  • Dierssen, K. (1996). Vegetation Nordeuropas (838 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Donato, D. C., Campbell, J. L., & Franklin, J. F. (2012). Multiple successional pathways and precocity in forest development: Can some forests be born complex? Journal of Vegetation Science, 23, 576–584.

    Google Scholar 

  • Dyrness, C. T., Viereck, L. A., & Van Cleve, K. (1986). Fire in taiga communities of interior Alaska. In K. Van Cleve, F. S. III Chapin, P. W. Flanagan, L. A. Viereck, & C. T. Dyrness (Eds.), Forest ecosystems in the Alaskan Taiga (Ecological studies, Vol. 57, pp. 74–86). New York: Springer.

    Google Scholar 

  • Ellenberg, H. (1988). Vegetation ecology of Central Europe (4th ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Elliott-Fisk, D. L. (2000). The taiga and boreal Forest. In M. G. Barbour & W. D. Billings (Eds.), North America terrestrial vegetation (pp. 41–73). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ermakov, N. (2010). Corresponding geographical types of hemiboreal forests in North Asia: Peculiarities of ecology and genesis. Phytocoenologia, 40, 29–40.

    Google Scholar 

  • Ermakov, N., Dring, J., & Rodwell, J. (2000). Classification of continental hemiboreal forests of North Asia. Braun-Blanquetia, 28, 131 pp.

    Google Scholar 

  • FAO. (2005). Global Forest Resources. Assessment 2005. FAO forestry paper 147, 320 pp.

    Google Scholar 

  • Finlay, R. D. (2004). Mycorrhizal fungi and their multifunctional roles. Mycologist, 18, 91–96.

    Google Scholar 

  • Fischer, A. (2011). Disturbances and biodiversity in forest ecosystems: A temperate zone perspective. Botanica Orientalis – Journal of Plant Science, 8, 1–9.

    Google Scholar 

  • Forbes, B. C., Bölter, M., Müller-Wille, L., Hukkinen, J., Müller, F., Gunslay, N. & Konstantinov, Y. (Eds.). (2006). Reindeer management in Northernmost Europe (Vol. 184, Ecological studies, 397 pp).

    Google Scholar 

  • Furayev, V. V., Wein, R. W., & MacLean, D. A. (1983). Fire influences in Abies-dominated forests. In R. W. Wein & D. A. MacLean (Eds.), The role of fire in northern circumpolar ecosystems (pp. 221–232). Chichester: Wiley.

    Google Scholar 

  • Gamache, I., & Payette, S. (2004). Height growth response of tree line black spruce to recent climate warming across the forest-tundra of eastern Canada. Journal of Ecology, 92, 835–845.

    Google Scholar 

  • Girard, F., Payette, S., & Gagnon, R. (2008). Rapid expansion of lichen woodlands within the closed-crown boreal forest zone over the last 50 years caused by stand disturbances in eastern Canada. Journal of Biogeography, 35, 529–537.

    Google Scholar 

  • Goldammer, J. G., & Furayev, V. V. (Eds.). (1996). Fire in ecosystems of boreal Eurasia (528 pp). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Gower, S. T., & Richards, J. H. (1990). Larches: Deciduous conifers in an Evergreen world. BioScience, 40, 818–826.

    Google Scholar 

  • Groisman, P. Y., & Gutman, G. (Eds.). (2013). Regional environmental changes in Siberia and their global consequences (357 pp). Dordrecht: Springer.

    Google Scholar 

  • Groisman, P. Y., Gutman, G., Shvidenko, A. Z., Bergen, K. M., Baklanov, A. A., & Stackhouse, P. W., Jr. (2013). Introduction: Regional features of Siberia. In P. Y. Groisman & G. Gutman (Eds.), Regional environmental changes in Siberia and their global consequences (pp. 1–17). Dordrecht: Springer.

    Google Scholar 

  • Haeupler, H. (2009). Konvergente Vegetation in hochozeanischen borealen Gebieten der Nord- und der Südhemisphäre. Forstarchiv, 80, 289–296.

    Google Scholar 

  • Hämet-Ahti, L. (1981). The boreal zone and its biotic subdivision. Fennia, 159, 69–75.

    Google Scholar 

  • Hare, F. K., & Ritchie, J. C. (1972). The boreal bioclimates. Geographical Review, 62, 333–365.

    Google Scholar 

  • Harsch, M. A., Hulme, P. E., McGlone, M. S., & Duncan, R. P. (2009). Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters, 12, 1040–1049.

    PubMed  Google Scholar 

  • Hellberg, E., Hörnberg, G., Östlund, L., & Tackrisson, O. (2003). Vegetation dynamics and disturbance history in three deciduous forests in boreal Sweden. Journal of Vegetation Science, 14, 267–276.

    Google Scholar 

  • Holtmeier, F.-K. (2009). Mountain timberlines. Ecology, patchiness, and dynamics (Advances in global change research, Vol. 36, 2nd ed., 438 pp.). Dordrecht: Springer.

    Google Scholar 

  • Holtmeier, F.-K., & Broll, G. (2007). Treeline advance – Driving processes and adverse factors. Landscape Online, 1, 1–33.

    Google Scholar 

  • Hytteborn, H., Maslov, A. A., Nazimova, D. I., & Rysin, L. P. (2005). Boreal forests in Eurasia. In F. Anderson (Ed.), Coniferous forests (Ecosystems of the world, Vol. 6, pp. 23–99). Amsterdam: Elsevier.

    Google Scholar 

  • IPCC. (2001). Climate Change 2001: The scientific basis (p. 881). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jasinski, S. M. (1999). Peat. In Minerals yearbook 1999: Volume I – Metals and minerals. Minerals and information. Reston: U.S. Geological Survey.

    Google Scholar 

  • Jasinski, J. P., & Payette, S. (2005). The creation of alternative stable states in the southern boreal forest, Québec, Canada. Ecological Monographs, 75, 561–583.

    Google Scholar 

  • Johnson, E. A. (1992). Fire and vegetation dynamics: Studies from the north American Boreal Forest (129 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Joosten, H., & Clarke, D. (2002). Wise use of mires and Peatlands – Background and principles including a framework for decision-making (304 pp). Saarijärvi: International Mire Conservation Group and International Peat Society.

    Google Scholar 

  • Kajimoto, T. (2010). Root system development of larch trees growing on Siberian permafrost. In A. Osawa, O. A. Zyryanova, Y. Matsuura, T. Kajimoto, & R. W. Wein (Eds.), Permafrost ecosystems. Siberian larch forests (Ecological studies, Vol. 209, pp. 303–330). Dordrecht: Springer.

    Google Scholar 

  • Kasischke, E. S. (2000). Boreal ecosystems in the global carbon cycle. In E. S. Kasischke & B. J. Stocks (Eds.), Fire, climate change, and carbon cycling in the Boreal Forest (Ecological studies, Vol. 138, pp. 19–30). New York: Springer.

    Google Scholar 

  • Kasischke, E. S., Christensen, N. L., Jr., & Stocks, B. J. (1995). Fire, global warming, and the carbon balance of boreal forests. Ecological Applications, 5, 437–451.

    Google Scholar 

  • Kennedy, G., & Mayer, T. (2002). Natural and constructed wetlands in Canada: An overview. Water Quality Research Journal of Canada, 37, 295–325.

    CAS  Google Scholar 

  • Kershaw, K. A. (1977). Studies on lichen-dominated systems: An examination of some aspects of the northern boreal lichen woodlands in Canada. Canadian Journal of Botany, 55, 393–410.

    Google Scholar 

  • Kharuk, V. I., Ranson, K. J., Im, S. T., & Naurzbaev, M. M. (2006). Forest-tundra larch forests and climatic trends. Russian Journal of Ecology, 37, 291–298.

    Google Scholar 

  • Kharuk, V. I., Ranson, K., & Dvinskaya, M. (2007). Evidence of evergreen conifer invasion into larch dominated forests during recent decades in Central Siberia. Eurasian Journal of Forest Research, 10, 163–171.

    Google Scholar 

  • Kharuk, V. I., Ranson, K. J., Dvinskaya, M. L., & Im, S. T. (2011). Wildfires in northern Siberian larch dominated communities. Environmental Research Letters, 6, 045208.

    Google Scholar 

  • Knapp, R. (1965). Die Vegetation von Nord- und Mittelamerika und der Hawaii-Inseln (373 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Koutaniemi, L. (2000). Twenty-one years of string movements on the Liippasuo aapa mire, Finland. Boreas, 28, 521–530.

    Google Scholar 

  • Krestov, P. (2003). Forest vegetation of easternmost Russia (Russian Far East). In J. Kolbek, M. Šrůtek, & E. O. Box (Eds.), Forest vegetation of Northeast Asia (pp. 93–180). Dordrecht: Kluwer.

    Google Scholar 

  • Kuhry, P., & Turunen, J. (2006). The postglacial development of boreal and subarctic peatlands. In R. K. Wieder & D. H. Vitt (Eds.), Boreal Peatland ecosystems (Ecological Studies, Vol. 188, pp. 25–46). Berlin: Springer.

    Google Scholar 

  • Kullman, L. (2008). Early postglacial appearance of tree species in northern Scandinavia: Review and perspective. Quaternary Science Reviews, 27, 2467–2472.

    Google Scholar 

  • Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C., & Neilson, E. T. (2008). Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proceedings of the National Academy of Sciences of the United States of America, 105, 1551–1555.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuusela, K. (1992). The boreal forests: An overview. FAO-Publication Unasylva 170. www.fao.org/docrep/u6850e/u6850e00.htm.

  • La Roi, G. H. (1967). Ecological studies in the boreal spruce-fir forest of the north American Taiga. Ecological Monographs, 37, 229–253.

    Google Scholar 

  • La Roi, G. H., & Stringer, M. H. L. (1976). Ecological studies in the boreal spruce-fir forest of the north American Taiga. II. Analysis of the bryophyte flora. Canadian Journal of Botany, 54, 619–643.

    Google Scholar 

  • Larsen, J. A. (1980). The boreal ecosystem (500 pp). New York: Academic.

    Google Scholar 

  • Larsen, J. A. (1989). The northern Forest border in Canada and Alaska: Biotic communities and ecological relationships (Ecological studies, Vol. 70, 255 pp.).

    Google Scholar 

  • Lauer, W., & Rafiqpoor, M. D. (2002). Die Klimate der Erde. Eine Klassifikation auf der Grundlage der ökophysiologischen Merkmale der realen Vegetation (271 pp). Stuttgart: Franz Steiner.

    Google Scholar 

  • Lieth, H., Berlekamp, J., Fuest, S., & Riediger, S. (1999). Climate diagram world Atlas (CD-ROM). Leiden: Backhuys Publication.

    Google Scholar 

  • Lloyd, A. H., Rupp, T. S., Fastie, C. L., & Starfield, A. M. (2003). Patterns and dynamics of treeline advance on the Seward peninsula. Alaska. Journal of Geophysical Research, 107, No. D2, 8161.

    Google Scholar 

  • Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichsstein, M., Papale, D., Piao, S. L., Schulze, E.-D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, M., Chambers, J., Ciais, P., Cook, B., Davis, K. J., Dolman, A. J., Gielen, B., Goulden, M., Gracea, J., Granier, A., Grelle, A., Friffis, T., Grünwald, T., Guidolotti, G., Hanson, P. J., Harding, R., Hollinger, D. Y., Hutyra, L. R., Kolaria, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B. E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E., Munger, J. W., Nikinmaa, E., Ollinger, S. V., Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M. J., Seuffert, G., Sierra, C., Smith, M. L., Tang, J., Valentini, R., Vesala, T., & Janssens, I. A. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509–2537.

    Google Scholar 

  • Mabberley, D. J. (2017). Mabberley’s plant-book (4th ed., 1102 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • MacDonald, G. M., Velichko, A. A., Kremenetski, C. V., Borisova, O. K., Goleva, A. A., Andreev, A. A., Cwynar, L. C., Riding, R. T., Forman, S. L., Edwards, T. W. D., Aravena, R., Hammarlund, D., Szeicz, J. M., & Gattaulin, V. N. (2000). Holocene treeline history and climate change across northern Eurasia. Quaternary Research, 53, 302–311.

    Google Scholar 

  • Malhi, Y., Baldochi, D. D., & Jarvis, P. G. (1999). The carbon balance of tropical, temperate and boreal forests. Plant, Cell and Environment, 22, 715–740.

    CAS  Google Scholar 

  • Masing, V., Botch, M., & Läänelaid, A. (2010). Mires of the former Soviet Union. Wetlands Ecology and Management, 18, 397–433.

    Google Scholar 

  • Matsuura, Y., & Hirobe, M. (2010). Soil carbon and nitrogen, and characteristics of soil active layer in Siberian permafrost region. In A. Osawa, O. A. Zyryanova, Y. Matsuura, T. Kajimoto, & R. W. Wein (Eds.), Permafrost ecosystems. Siberian larch forests (Ecological studies, Vol. 209, pp. 149–163). Dordrecht: Springer.

    Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2007). Wetlands (4th ed., 920 pp). New York: Wiley.

    Google Scholar 

  • Mollicone, D., Achard, F., Marchesini, L. B., Federici, S., Laipold, M., Roselini, S., Schulze, E. D., & Valentini, R. (2002). A new remote sensing based approach to determine forest fire cycle: Case study of the Central Siberia Abies dominated Taiga. Tellus, 54B, 688–695.

    Google Scholar 

  • Moore, P. D., & Bellamy, D. J. (1974). Peatlands (221 pp). New York: Springer.

    Google Scholar 

  • Morneau, C., & Payette, S. (1989). Postfire lichen-spruce woodland recovery at the limit of the boreal forest in northern Québec. Canadian Journal of Botany, 67, 2770–2782.

    Google Scholar 

  • Murphy, P. J., Mudd, J. P., Stocks, B. J., Kasischke, E. S., Barry, D., Alexander, M. E., & French, N. H. F. (2000). Historical fire records in the north American Boreal forest. In E. S. Kasischke & B. J. Stocks (Eds.), Fire, climate change, and carbon cycling in the Boreal Forest (Ecological studies, Vol. 138, pp. 274–288). New York: Springer.

    Google Scholar 

  • Näsholm, T., Kielland, K., & Ganeteg, U. (2009). Uptake of organic nitrogen by plants. New Phytologist, 182, 31–48.

    PubMed  Google Scholar 

  • Nowak, R. M. (1999). Walker’s mammals of the world (Vol. 1 + 2, 6th ed., 2015 pp). Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Øberg, L., & Kullman, L. (2011). Ancient subalpine clonal spruce (Picea abies): Sources of postglacial vegetation history in the Swedish Scandes. Arctic, 64, 183–196.

    Google Scholar 

  • Ohta, T., Maximov, T. C., Dolmand, A. J., Nakai, T., Van der Molen, M. K., Kononov, A. V., Maximov, A. P., Hiyama, T., Iijima, Y., Moors, E. J., Tanaka, H., Tobai, T., & Yabuki, H. (2008). Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998–2006). Agricultural and Forest Meteorology, 148, 1941–1953.

    Google Scholar 

  • Oliver, C. D., & Larson, B. C. (1996). Forest stand dynamics (467 pp). New York: McGraw-Hill.

    Google Scholar 

  • Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’Amico, J. A., Itoua, I., Strand, H., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on earth. Bioscience, 51, 933–938.

    Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghto, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988–993.

    CAS  PubMed  Google Scholar 

  • Parisien, M.-A., Peters, V. S., Wang, Y., Little, J. M., Bosch, E. M., & Stocks, B. J. (2006). Spatial patterns of forest fires in Canada, 1980–1999. International Journal of Wildland Fire, 15, 361–374.

    Google Scholar 

  • Payette, S. (1983). The forest tundra and present tree-lines of the northern Québec-Labrador peninsula. In P. Morriset & S. Payette (Eds.), Tree-line ecology: Proceedings of the northern Québec Treeline conference (pp. 3–23). Centre d’études nordique: Université Laval, Quebec.

    Google Scholar 

  • Payette, S., Eronen, M., & Jasinski, J. J. P. (2002). The circumpolar tundra–taiga interface. Late Pleistocene and Holocene Changes. Ambio Special Report, 12, 15–22.

    Google Scholar 

  • Pollock, S. L., & Payette, S. (2010). Stability in the patterns of long-term development and growth of the Canadian spruce–moss forest. Journal of Biogeography, 37, 1684–1697.

    Google Scholar 

  • Prokushkin, A. S., Knorre, A. A., Kirdyanov, A. V., & Schulze, E. D. (2006). Productivity of mosses and organic matter accumulation in the litter of Sphagnum larch forest in the permafrost zone. Russian Journal of Ecology, 37, 225–232.

    Google Scholar 

  • Read, D., Leake, J. R., & Perez-Moreno, J. (2004). Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany, 82, 1243–1263.

    CAS  Google Scholar 

  • Rochefort, L. & Lode, E. (2006). Restoration of degraded boreal peatlands. In R. K. Wieder & D. H. Vitt (Eds.), Boreal Peatland ecosystems (Ecological studies, Vol. 188, pp. 381–423). Berlin: Springer.

    Google Scholar 

  • Rowe, J. S. (1972). Forest Regions of Canada. Department of the Environment, Canadian Forestry Service Ottawa. Publication no. 1.300, 172 pp.

    Google Scholar 

  • Rowe, J. S. (1983). Concepts of fire effects on plant individuals and species. In R. W. Wein & D. A. MacLean (Eds.), The role of fire in northern circumpolar ecosystems (pp. 135–154). Chichester: Wiley.

    Google Scholar 

  • Royama, T. (1984). Population dynamics of the spruce budworm Choristoneura Fumiferana. Ecological Monographs, 54, 429–462.

    Google Scholar 

  • Ruuhijärvi, R. (1983). The Finnish mire types and their regional distribution. In A. J. P. Gore (Ed.), Mires: Swamp, Bog, Fen and Moor. Ecosystems of the world (Vol. 4B, pp. 47–67). New York: Elsevier.

    Google Scholar 

  • Rydin, H., & Jeglum, J. (2006). The biology of Peatlands (343 pp). New York: Oxford University Press.

    Google Scholar 

  • Schenk, E. (1966). Zur Entstehung der Strangmoore und Aapamoore der Arktis und Subarktis. Zeitschrift Geomorphologie N.F., 10, 345–368.

    Google Scholar 

  • Schultz, J. (2000). Handbuch der Ökozonen (577 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Schultz, J. (2005). The Ecozones of the world (2nd ed., 252 pp). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Schulze, E.-D., Wirth, C., Mollicone, D., & Ziegler, W. (2005). Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Oecologia, 146, 77–88.

    PubMed  Google Scholar 

  • Schulze, E.-D., Wirth, C., Mollicone, D., von Lüpke, N., Ziegler, W., Achard, F., Mund, M., Prokushkin, A., & Scherbina, S. (2012). Factors promoting larch dominance in Central Siberia: Fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers. Biogeosciences, 9, 1405–1421.

    Google Scholar 

  • Scott, G. A. J. (1995). Canada’s vegetation. A world perspective (361 pp). Montreal/Kinston: McGill-Queen’s University Press.

    Google Scholar 

  • Seppä, H. (2002). Mires of Finland: Regional and local controls of vegetation, landforms, and long-term dynamics. Fennia, 180, 43–60.

    Google Scholar 

  • Shagdenova, M. (Ed.). (2002a). The physical geography of northern Eurasia (571 pp). Oxford: Oxford University Press.

    Google Scholar 

  • Shagdenova, M. (2002b). Climate at present and in the historical past. In M. Shagdenova (Ed.), The physical geography of northern Eurasia (pp. 70–102). Oxford: Oxford University Press.

    Google Scholar 

  • Shiklomanov, N. I., & Strelitskiy, D. A. (2013). Effect of climate change on Siberian infrastructure. In P. Y. Groisman & G. Gutman (Eds.), Regional environmental changes in Siberia and their global consequences (pp. 155–170). Dordrecht: Springer.

    Google Scholar 

  • Shvidenko, A. Z., Gustafson, E., David McGuire, A., Kharuk, V. I., Schepaschenko, D. I., Shugart, H. H., Tchebakova, N. M., Vygodskaya, N. N., Onuchin, A. A., Hayes, D. J., McCallum, J., Maksyutov, S., Mukhortova, L. V., Soja, A. J., Belelli-Marchesini, L., Kurbatova, J. A., Oltchev, A. V., Parfenova, E. I., & Shuman, J. K. (2013). Terrestrial ecosystems and their change. In P. Y. Groisman & G. Gutman (Eds.), 2013: Regional environmental changes in Siberia and their global consequences (pp. 171–249). Dordrecht: Springer.

    Google Scholar 

  • Sjörs, H. (1983). Mires of Sweden. In A. J. P. Gore (Ed.), Mires: Swamp, bog, Fen and moor. Ecosystems of the world (Vol. 4B, pp. 69–94). New York: Elsevier.

    Google Scholar 

  • Sofronov, M. A., & Volokitina, A. V. (2010). Wildfire ecology in continuous permafrost zone. In A. Osawa, O. A. Zyryanova, Y. Matsuura, T. Kajimoto, & R. W. Wein (Eds.), Permafrost ecosystems. Siberian Larch Forests (Ecological studies, Vol. 209, pp. 59–82) Dordrecht: Springer.

    Google Scholar 

  • Solomeshch, A. I. (2005). The west Siberian lowland. In L. H. Fraser & P. A. Keddy (Eds.), The world’s largest wetlands. Ecology and conservation (pp. 11–62). Cambridge: Cambridge University Press.

    Google Scholar 

  • Stinson, G., Kurz, W. A., Smyth, C. E., Neilson, E. T., Dymond, C. C., Metsaranta, J. M., Boisvenue, C., Rampley, G. J., Li, Q., White, T. M., & Blains, D. (2011). An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Global Change Biology, 17, 2227–2244.

    PubMed Central  Google Scholar 

  • Stocks, B. J., Mason, J. A., Todd, J. B., Bosch, E. M., Wotton, B. M., Amiro, B. D., Flannigan, M. D., Hirsch, K. G., Logan, K. A., Martelll, D. L., & Skinner, W. R. (2002). Large forest fires in Canada, 1959–1997. Journal of Geophysical Research, 108(D1), 8149.

    Google Scholar 

  • Succow, M., & Joosten, H. (Eds.). (2001). Landschaftsökologische Moorkunde (2nd ed., 622 pp). Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Sugimoto, A., Yanagisawa, N., Naito, D., Fijita, N., & Maximov, T. C. (2002). Importance of permafrost as a source of water for plants in east Siberian taiga. Ecological Research, 17, 493–503.

    Google Scholar 

  • Sukachev, V. N., & Dylis, N. V. (1964). Fundamentals of Forest Biogeocoenology (672 pp). Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Swanson, D. K., & Grigal, D. F. (1988). A simulation of mire patterning. Oikos, 53, 309–314.

    Google Scholar 

  • Swanson, M. E., Franklin, J. F., Beschta, R. L., Crisafulli, C. M., DellaSala, D. A., Hutto, R. L., Lindenmayer, D. B., & Swanson, F. J. (2011). The forgotten stage of forest succession: Early successional ecosystems on forest sites. Frontiers in Ecology and Environment, 9, 117–125.

    Google Scholar 

  • Tenow, O., Bylund, H., Nilsen, A. C., & Karlsson, P. S. (2005). Long-term influence of herbivores on northern birch forests. In F. E. Wielgolaski, P. S. Karlsson, S. Neuvonen & D. Thannheiser (Eds.), Plant ecology, herbivory, and human impact in Nordic Mountain Birch Forests (Ecological studies, Vol. 180, pp. 165–181). Berlin: Springer.

    Google Scholar 

  • Thannheiser, D. (1981). Die Küstenvegetation Ostkanadas. Münstersche Geographische Arbeiten, 10, 201 pp.

    Google Scholar 

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55–94.

    Google Scholar 

  • Timoney, K. P., La Roi, G. H., Zoltai, S. C., & Robinson, A. L. (1992). The high subarctic forest-tundra of northwestern Canada: Position, width, and vegetation gradients in relation to climate. Arctic, 45, 1–9.

    Google Scholar 

  • Tishkov, A. (2002). Boreal forests. In M. Shagdenova (Ed.), The physical geography of northern Eurasia (pp. 216–233). Oxford: Oxford University Press.

    Google Scholar 

  • Tranquillini, W. (1982). Frost-drought and its ecological significance. In O. L. Lange, P. S. Nobel, C. B. Osmond, & H. Ziegler (Eds.), Encyclopedia of plant physiology (Vol. 12B, pp. 379–400). Berlin: Springer.

    Google Scholar 

  • Treter, U. (1993). Die borealen Waldländer (210 pp). Braunschweig: Westermann.

    Google Scholar 

  • Treter, U. (1995). Fire-induced succession of lichen-spruce woodland in Central Labrador-Ungava, Canada. Phytocoenologia, 25, 161–183.

    Google Scholar 

  • Trewartha, G. T., & Horn, L. H. (1980). An introduction to climate (416 pp). New York: McGraw-Hill.

    Google Scholar 

  • Troll, C., & Paffen, K. H. (1964). Karte der Jahreszeitenklimate der Erde. Erdkunde, 18, 5–28.

    Google Scholar 

  • Tukhanen, S. (1984). A circumboreal system of climatic-phytogeographical regions. Acta Botanica Fennica, 127, 1–50.

    Google Scholar 

  • Tukhanen, S. (1992). The climate of Tierra del Fuego from a vegetation geographical point of view and its ecoclimatic counterparts elsewhere. Acta Botanica Fennica, 145, 1–64.

    Google Scholar 

  • Turunen, J., Tommpo, E., Tolonen, K., & Reinikainen, A. (2002). Estimating carbon accumulation rates of undrained mires in Finland – Application to boreal and subarctic regions. Holocene, 12, 69–80.

    Google Scholar 

  • Van Andel, J. (1975). A study of the population dynamics of the perennial plant species Chamaenerion angustifolium (L.) Scop. Oecologia, 19, 329–337.

    PubMed  Google Scholar 

  • Van Cleve, K., Oliver, L., Schlentner, R., Viereck, L. A., & Dyrness, C. T. (1983a). Productivity and nutrient cycling in taiga forest ecosystems. Canadian Journal of Forest Research, 13, 747–766.

    Google Scholar 

  • Van Cleve, K. V., Viereck, L. A., & Dyrness, C. T. (1983b). Dynamics of a black spruce ecosystem in comparison to other forest types: A multi-disciplinary study in interior Alaska. In R. W. Wein, R. R. Riewe, & I. R. Methven (Eds.), Resources and dynamics of the Boreal Zone (pp. 148–166). Ottawa: Association of Canadian Universities for Northern Studies.

    Google Scholar 

  • Van Cleve, K., Chapin III, F.,S., Flanagan, P. W., Viereck, L. A., & Dyrness, C. T. (Eds.), (1986). Forest ecosystems in the Alaskan Taiga (Ecological studies, Vol. 57, 230 pp.).

    Google Scholar 

  • Viereck, L. A. (1973). Wildfire in the taiga of Alaska. Quaternary Research, 3, 465–495.

    Google Scholar 

  • Viereck, L. A., Van Cleve, K., & Dyrness, C. T. (1986). Forest ecosystem distribution in the taiga environment. In K. Van Cleve, F. S. III Chapin, P. W. Flanagan, L. A. Viereck, & C. T. Dyrness (Eds.), Forest ecosystems in the Alaskan Taiga (Ecological studies, Vol. 57, pp. 22–43). Berlin: Springer.

    Google Scholar 

  • Vlassova, T. K. (2002). Human impacts on the tundra-taiga zone dynamics: The case of the Russian lesotundra. Ambio, 12, 30–36.

    Google Scholar 

  • Walter, H., Breckle, S. -W., Hager, J., Loris, K., & Miehe, G. (1991). Ökologie der Erde (Gemäßigte und arktische Zonen außerhalb Euro-Nordasiens, Vol. 4, 586 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Walter, H., Breckle, S. -W., Agachajanz, O., & Rahmann, M. (1994). Ökologie der Erde (Spezielle Ökologie der Gemäßigten und Arktischen Zonen Euro-Nordasiens, Vol. 3, 2nd ed., 726 pp.). Stuttgart/Jena: G. Fischer.

    Google Scholar 

  • Washburn, A. L. (1979). Geocryology. A survey of periglacial processes and environments (406 pp). London: Edward Arnold.

    Google Scholar 

  • Weber, M. G., & Van Cleve, K. (2005). The boreal forests of North America. In Anderson, F. (Ed.), Coniferous forests (Ecosystems of the world, Vol. 6, pp. 101–130). Amsterdam: Elsevier.

    Google Scholar 

  • Wehherg, J., Thannheisser, D., & Meier, K. -D. (2005). Vegetation of the mountain birch forest in northern Fennoscandia. In F. E. Wielgolaski, P. S. Karlsson, S. Neuvonen, & D. Thannheiser (Eds.), Plant ecology, herbivory, and human impact in Nordic Mountain Birch Forests (Ecological studies, Vol. 180, pp. 35–52). Berlin: Springer.

    Google Scholar 

  • Wein, N. (1999). Sibirien (248 pp). Gotha/Stuttgart: Klett-Perthes.

    Google Scholar 

  • Wein, R. W., & MacLean, D. A. (Eds.). (1983). The role of fire in northern circumpolar ecosystems (322 pp). New York: Wiley.

    Google Scholar 

  • Weischet, W., & Endlicher, W. (2008). Einführung in die Allgemeine Klimatologie (7th ed., 342 pp). Berlin/Stuttgart: Gebr. Borntraeger.

    Google Scholar 

  • Weise, O. R. (1983). Das Periglazial. Geomorphologie und Klima in gletscherfreien, kalten Regionen (199 pp). Berlin/Stuttgart: Gebrüder Bornträger.

    Google Scholar 

  • Wirth, C. (2005). Fire regime and tree diversity in boreal forests: Implications for the carbon cycle. In M. Scherer-Lorenzen, C. Körner, & E.-D. Schulze (Eds.), Forest diversity and function (Ecological studies, Vol. 176, pp. 309–344). Berlin: Springer.

    Google Scholar 

  • Wood, S. W., Hua, Q., Allen, K. J., & Bowman, D. M. J. S. (2010). Age and growth of a fire prone Tasmanian temperate old growth forest stand dominated by Eucalyptus regnans, the world’s tallest angiosperm. Forest Ecology and Management, 260, 438–447.

    Google Scholar 

  • Zackrisson, O. (1977). Influence of forest fires on the north Swedish boreal forest. Oikos, 29, 22–32.

    Google Scholar 

  • Zech, W., Schad, P., & Hintermaier-Erhard, G. (2014). Böden der Welt: Ein Bildatlas (2nd ed., 152 pp). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Zenner, E. K., Lahde, E., & Laiho, O. (2011). Contrasting the temporal dynamics of stand structure in even- and uneven-sized Picea abies dominated stands. Canadian Journal of Forest Research, 41, 289–299.

    Google Scholar 

  • Zepp, H. (2003). Geomorphologie. Eine Einführung (2nd ed., 354 pp). Paderborn/München/Wien/Zürich: Ferdinand Schöningh.

    Google Scholar 

  • Zoltai, S. C., & Pollett, F. C. (1983). Wetlands in Canada: Their classification, distribution, and use. In A. J. P. Gore (Ed.), Mires: Swamp, bog, Fen and moor. Ecosystems of the world (Vol. 4B, pp. 245–268). New York: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfadenhauer, J.S., Klötzli, F.A. (2020). Vegetation of the Boreal (Cold–Temperate) Zone. In: Global Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-49860-3_13

Download citation

Publish with us

Policies and ethics